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1. Introduction

The development of fine ceramics in our company
has started with the reaction sintered SisN¢-SiC composite
ceramics ‘KUROCERAM-N” in 1978. Afterwards the
joint project of ceramics development aimed for the
industrialization with Nippon Steel Corporation was
started from 1985. In this joint development, the material
of the typical structural ceramics, such as zirconia (ZrO»),
alumina (Al:O3), silicon carbide (SiC) and sialon, were
developed and tried practical applications. The ceramics
business, in which main products were ceramic parts of
semiconductor manufacturing equipment, was launched
as joint business with Nippon Steel Corporation in 2000
and shifted to independent business of Krosaki Harima
Corporation in 2010.

The structural ceramics were expected for various
application as the new materials with excellent properties
such as high hardness, high wear resistance, high strength,
high temperature resistance and high corrosion resistance
and so on. So various company were entered the ceramics
market, many research and development of fine ceramics
were promoted actively. However, the structural ceramics
are high cost compared with competitive materials such as
metals, the applications of fine ceramics was narrow down
to the suitable application for ceramics consequently. The
ceramics makers were gradually screened and the makers
which have a competitive product and process were
survived in ceramics business.

In such situation, our company was especially
focused on the semiconductor manufacturing equipment
and developed materials and commercialized the fine
ceramics. The first product used for semiconductor
manufacturing equipment was alumina which is low cost
material in ceramics. After that, Sialon with low thermal
expansion coeflicient and SiC with high stiffness as shown

in Fig.1, were used instead of alumina.
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Fig. 1 Specific stiffness and coeflicient of thermal expansion of materials.
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When our company entered the market of
semiconductor manufacturing equipment, main products
were sialon parts. Sialon is solid solution of SisN4 and
ALOs and it has excellent properties such as high strength,
high fracture toughness and low thermal expansion
coefficient same as SisN¢ ceramics. The technology of
sialon of our company was introduced from Lucas Cookson
Syalon Co., a British company. We developed several grade
of sialon in Table 1 based on introduced technology, S110
grade with high strength and high toughness, S110H
which is densified and strengthened S110, low cost version
S140.

After we entered

the

field of semiconductor

manufacturing equipment, the miniaturization of
Table 1 Characteristics of sialon ceramics
Code S110 S110H S120 S140
Bulk Density / g-cm™ 3.24 3.25 3.22 3.20
Flexural Strength / MPa 880 1180 690 490
Fracture Toughness / MPa-m"? 6.5 6.5 6.0 4.6
Young's Modulus / GPa 290 300 300 280
Thermal Expansion Coefficient at 23 °C / 10° K 1.3 1.3 1.3 1.3
Thermal Conductivity / W-m™-K™ 21 21 21 21
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semiconductor devices is progressed and design rule of
semiconductor was 180 nm in 2000. 32 nm was used in
2010, recently 7 nm was achieved in 2019, so the
semiconductor manufacturing equipment were rapidly
of

semiconductor devices, higher accuracy was required for

advanced. According to rapid miniaturization
semiconductor manufacturing equipment. To satisfy high
accuracy requirement, ceramics, which have special
properties such as low specific gravity, low thermal
expansion and high stiffness, came to be adopted for the
parts of the equipment. As represented by these needs, it is
necessary to provide the materials which is stable for
temperature change and stress to keep the accuracy of the
apparatus. The low thermal expansion materials was
required to reduce the dimension change with slight
temperature change. On the other hand, high stiffness
materials were required to reduce the dimension change by
stress. Furthermore the parts could move and control at
the high speed by weight reduction which achieved by
using high stiffness materials. In this case, materials with
low specific stiffness, which is value of stiffness divided by
specific weight, is usable.

Corresponding to such needs, we developed boron
nitride (B4C) ceramics, which has high specific stiffness,
and extremely low thermal expansion ceramics which has
nearly zero thermal expansion coeflicient at room

temperature. The details of these developed materials are

described below.

2 High specific stiffness BsC ceramics

High specific stiffness materials in conventional
structural ceramics is SiC. The materials with higher
young’s modulus than SiC are carbide such as NbC, TaC,
Mo,C and WC, and boride such as TiB,, ZrB> and VB,
but these materials has higher theoretical density
comparing to SiC 1.4 times or more, so specific stiffness of
these materials are lower than SiC.

On the other hand, B4sC has lower theoretical
density of 2.52 g / cm?® than 3.2 g / cm?® of SiC and has
almost same young's modulus. So higher specific stiffness
is available with B4C material. However, BsC is high
covalent bonded material same as SiC and has high melting
point of 2437 “C, so it is difficult to densify BsC without
additive. Furthermore, B4C is hard materials following
diamond and cubic BN, so machining of B4C in very
difficult. To solve these problems, we tried to develop the

dense B4C with improved machinability.
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2°1 Improvement of the sinterability of B«C

As mentioned above, B4C is strong covalent bonded
materials, so it is difficult to densify by solid phase
diffusion . So we investigated additive as sintering aid
and tried to improve sinterability of B4C. As the sintering
aids, additive A, which enhance the diffusivity in solid
phase, and additive B, which produce liquid phase at
sintering temperature and occurrence liquid phase
sintering, were used and compared with B4C without
additive.

As shown Fig.2, Sintered density was raised up to
93.5 % of theoretical density in the case of additive A,
which was higher than 88.3 % ofB4C without additive.
Furthermore, the density of 97.3 % was available with
additive B by utilizing liquid phase sintering. As shown in
Fig.3, the grain size of B4«C was increased with increasing

of amount of additive B.

100

98

96

94

92

90

88

Relative Density /%

86

84

82

80

without additive

additive A

additive B

Fig.2 Relative density of BsC ceramics with or without additive.
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(b) 3 wt% addition

(b) 0.6 wt% addition
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Fig. 3 Effects of additive on microstructural change of B<C ceramics.

2- 2 BsC OMEMBBIEICLZBE, MIMEOSE

BIIE TR0, BiC OFFALIZIE, HAHBERS
ﬁ‘ﬁ?ﬁﬁ%éukﬁ‘ﬁiméﬂfiﬁ‘, ﬁﬁ%ﬁ"ﬂjb:ﬁébx’

SRR, MR T ERL, WEE
FLURTSETLEHIMEDSEL, . F2, T3y
ZAOM TS, RSB OREDIREHETL S
EAHSNTHEY Y, RELINTIEZSET L7200
ML 2 Rt L 720

Rk OFMA B 2L 72854, 100 4 m Pl E
DMKKLDFEET D LD, Mﬂzﬁ?ﬁﬂﬁﬁlmtm:
MO TRIMA OB % M FT L 720 RIS & LT
1, BiC EFUSE T, BERRFICERLL 2V ERlTO
FTFERRINTAZIET, o= 73R LR E
2T 5 2 AR AAT, O, B4 1R $ED,
FEEREE 30 um LTICHIEL 226k 15 a2 &
M TEze TOME O TMEFEAML 72455, B 5
WRTEIZSIC LVEEETH LD ST, B

Krosaki Harima Technical Report No.167 (2019)

- 102 —

2°2 Improvement of strength and machinability of
B4C by controlling the microstructure

As mentioned above, it was confirmed that the
liquid phase sintering is effective for densification of B4C.
However grain growth occurred rapidly and resulted in
the degradation of strength. Also it is known that the
machinability of ceramics materials is affected by grain
size. For these reasons, it was necessary to control the
microstructure to improve strength and machinability?.

In the case of additive B, the large grains over 100
pm was developed, so addition of grain growth inhibitor
was investigated. The addition of high melting point
material which does not react with boron carbide and does
not melt during sintering was tried for inhibition grain
growth by the pinning effect. As the result, the grain size
of sintered body was controlled less than 30 pm as shown
Fig.4. A machining resistance of the boron carbide with
grain growth inhibitor was almost same value with silicon

carbide as shown in Fig.5, the machinability of boron



(a) without inhibitor

(b) 2.5 wt% inhibitor addition

Fig. 4 Effect of Inhibitor on microstructure of B4C ceramics.
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Fig.5 Grinding resistance force of SiC and B4C ceramics.
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carbide was successfully improved.

Furthermore, Improvement of properties by
microstructure controlling was investigated and boron
carbide ceramics with higher specific stiffness than silicon
carbide was obtained. The developed boron carbide
ceramics is able to fabricate a complex shape parts as shown

in Fig.6.

3 Ultra Low thermal expansion ceramics
3°1 Ultra Low thermal expansion ceramics
(NEXCERA™)
Our ultra-low thermal expansion ceramics, which
is based on cordierite, 2MgO *2A1,05°5Si0: was originally

Krosaki Harima Technical Report No.167 (2019)



Table 2 Characteristics of SiC and BsC

sic B.C
Code C101 BC101
Bulk Density / g-cm™ 3.16 2.42
Flexural Strength / MPa 490 400
Young's Modulus / GPa 430 385
Specific Stifiness / GPa-(g-cm)” 136 159
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Fig. 6 Prototype of rib-structure model of B:iC
ceramics.

developed in Advanced Technological Research of Nippon
Steel Corporation”. It was modified for the mass
production and registered trademark of “NEXCERA”.
NEXCERA has extremely low coefficient of thermal
expansion and shows nearly zero expansion at room
temperature as shown in Fig.7.

The main phase of this materials is cordierite crystal
grain and amounts of grain boundary phase is small as
shown in Fig.8. Thus, the material is consist of crystalline
cordierite, it results in high stiffness comparing with low
thermal expansion glass which consist of glassy phase and
crystalline phase crystallized from glassy phase. We
developed several type of low thermal expansion ceramics
as shown in Table 3.

The thermal expansion of NEXCERA is controlled

by combination of cordierite grains and grain boundary,

Amorphous grain boundary

W

Cordierite grain

Fig. 8 Microstructure of NEXCERA™,



Table 3 Characteristics of NEXCERA™ and LTEG

Code N113B N117B N118C N119C CD107 LTEG
Color black black blue-grey |light blue-grey| blue-grey
Bulk Density / g-cm'3 2.50 2.55 2.58 2.50 2.57 2.50
Young's Modulus / GPa 130 140 140 130 143 60 - 90
Flexural Strength / MPa 210 230 220 166 230 50 -100
‘Thermal Expansion Coefficient ]
at23°c /10° K" <0.03 <0.03 <0.03 <0.03 <0.03% <0.03
Thermal Conductivity / W-m™- K 3.7 4.2 45 4.3 47 1.46
Xat22 °C
WTOBWEZ POl RICHE T2 LT, that is, cordierite with slightly minus thermal expansion at
M Z OBUEIEFEIVN IV BE R R OIS T HVN room temperature and grain boundary with plus expansion
X<, R B A 2 W LI MR C A are combined to be the thermal expansion adjusted to
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Fig.9 Long-term stability of NEXCERA™ and low thermal expansion glass®”.
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Fig. 10 Flatness change of NEXCERA™ in thermal cycle test.
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almost zero at room temperature.

Since the thermal expansion difference of cordierite
and grain boundary is small, the residual stress in material
is getting low. As the result the obtained material has
excellent characteristics such as stability at long-term and
thermal cycle.

Fig.9 the
dimensional stability of NEXCERA and low thermal
expansion glass, the dimension change of NEXCERA

shows comparison of long-term

with 550 mm length was only +4.8 nm after 13 months,
the change of low thermal expansion glass with length of
300 mm was 90 nm. Thus it was confirmed that
NEXCERA has excellent long-term stability®”.
Mirror-finished NEXCERA sample of 340 mm in
diameter was tested by thermal cycle test of 4 times cycle
of RT—-20 °CX11 h—60 °CX11 h—RT.. The flatness of
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Fig. 11 Hole plate for calibration of CMM.
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sample was changed only 2 nm after thermal cycle test. It
was confirmed that NEXCERA has high thermal cycle
stability.

3°2 Application of low thermal expansion ceramics
NEXCERA has extremely low thermal expansion,
high stiffness and high stability of aging change and
thermal cycle, so NEXCERA is used for standards for
calibration of precise dimension measuring apparatus®.
Fig.11 shows hole plate made by NEXCERA used
for precision examination of coordinate measuring
machine (CMM). Also NEXCERA is used for step gage
for CMM, block gage based on JIS B 7506:2004 and so
on. In new application, NEXCERA is investigated to
application to space optics. Experimental production of a
mirror for space telescope was undertaken in cooperation

)9,10)‘

with Japan Aerospace Exploration Agency (JAXA

4 Development of functional ceramics

Although we developed structural ceramics used in
precision equipment as described above, we have also
developed functional ceramics. One of them is dielectric

ceramic materials for electrostatic chuck (ESC).

Fig. 12 Pin structure of electro static chuck.

- 107 -

Krosaki Harima Technical Report No.167 (2019)



DFmTHY, FIALy FU7EEETHLENT
Who B, HHASRMALLTVL2EET v 7 H

ML, JR(Varvty - 5—xvr) H#OMET
HY, ALOs #N—A|Z, BEEILILEHIHTLZ L1
LY, BOENEEN B A ST FEBL 22
BThY), RT7LVAOREL TRELTLHILIZLD
IN=T A7 VDFEEZMH LM TH L5, 72, A
12 12" TS, BEAEEOY VRN THAMTIZ LD,
T INE QAR A 075 % LTINS WEE
Fx v 7 OBELTRETH %o

5 &8

I3y AFHELTIE, P ETHRTE 785
FEITTIE R, RS RE FE A S TR S
N B BHE KOG H I THAM OB E L% D 5
CLICEsT, 2P —DZ—RIZEZTE, 5HBD
tIIVIADRFRIZOVTIL, EREHKERTH—
7T/ )y 7 DE 53y 7 AMFEORZEITR IR
CENTZED DY, Fhi7zeAAR B2 HF L 7R R
IS o T EEZ LN D, ZDI2DITIE,
HHRFERHIDHAADZ L AARALELEAR, B,
BT e Voo 70 AL R OB OB %S, E
ALED, BEWEMHEI LI TH 5,

W XD EEAL 2 O ==X IR ST 572012
&, SR TEMZEA LT LT D Lo 3k
Bt T Iy 7 A0 IR LT 720121, ToT
RALE, SHBREEMLTHEREOH T,
BIREIC Z— R E 4R 2 THA L) — WK, Btz defit L
T ZEDUETH D, D7D, 5HOME
B RIS TR R O ¥ —AFAMT OBASs I 1%
AN, BRI I W R B S - BB 5
AMETLIEN LTIV I AFHEDOFREIZIIA TR
ThH b

Xk
1)

==
IS A

HEEA, I, hEEAS 3R
[11] 1137-1140 (1987).

REEESE, PR N, IR RfGSE 2 T3y 7 R 49 [2]
122-125 (2014).

Hyukjae Lee, Robert F. Speyer :J. Am.
Ceram. Soc. 85 [5] 1291-93 (2002).

Roy W. Rice, Carl Cm. Wu, Fred Boichelt : J.
Am. Ceram. Soc. 77 [10] 2539-2553 (1994).

BPHRATER, mARSEE, ARIERE, AREZEE, /N

95

2)

3)

4)

5)

Krosaki Harima Technical Report No.167 (2019)

- 108 —

The ESC is the part to attract and fix the silicon
wafer by electrostatic using in equipment such as dry
etching apparatus. The materials for electrostatic chuck
which we manufacture currently is Johnsen-Rahbek (JR)
type. The materials is alumina based ceramics which is
controlled electrical resistance to obtain high attraction
force and high desorption response. Also the materials is
pore-free ceramics, so it is suppressed the generation of
particles. It is available to reduce the contact area with
silicon wafer to 0.75 % by precision machining of pin

shape as shown in Fig.12.

5 Conclusion

We developed not only materials development
described above, also we developed the precision machining
of complex shape required in semiconductor manufacturing
equipment to provide customer needs. Considering about
the ceramics development in future, the development of
conventional monolithic ceramics seems to be almost
done, so it is necessary to design the materials from new
viewpoint. To do new development, overall technical
development and introduction of new technologies,
including powder process, forming process and sintering
process, is necessary.

Also it is necessary to introduce various machining
technology to answer to advancement of needs. To extend
ceramics application for the future, it is necessary to
provide materials and technology matching with needs in
great change of social environment, such as IoT and Al
popularization. For future development of ceramics
business, development of seeds technology in materials
and manufacturing technology based on long-term vision

is very important.
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