濡れ性の変化を考慮したスラグ / メタル界面における ZrO₂-C 耐火物の溶損シミュレーション

Corrosion Simulation of ZrO₂-C Refractories Considering the Change of Wettability at the Slag/Metal Interface

松本成史*, 脇田 保**, 合田広治***, 後藤 潔****, 森川勝美*****

Shigefumi MATSUMOTO*, Tamotsu WAKITA**, Koji GODA***, Kiyoshi GOTO**** and Katsumi MORIKAWA*****

1 緒言

製鋼における連続鋳造用浸漬ノズルのパウダーライン部は,溶融モールドパウダー(以下パウダー)と溶 鋼により局部的に侵食される。パウダーライン部の溶 損は,浸漬ノズルの寿命を決定することが多いため, 一般に耐食性の高いジルコニア-カーボン耐火物(ジ ルコニア-グラファイト耐火物とも,以下 ZG 材質)が 使用される。

一般的に,酸化物-炭素系複合耐火物における局 部溶損メカニズムとして、スラグ/メタル界面近傍で、 耐火物表面とスラグあるいはメタルとの濡れ性が時間 変化することによりスラグ / メタル界面が上下運動し、 両者により溶損されるという機構が明らかにされてい る^{1,2)}。これは、一般的傾向として、固体酸化物は酸 化物融体であるスラグに濡れやすく、固体炭素は溶 融メタルに濡れやすいことから、耐火物表面の酸化 物が多い時は耐火物がスラグに濡れやすくなる。この とき、耐火物とスラグが接することでスラグによる耐 火物表面の酸化物の溶損が進行する。酸化物の溶損 が進行すると、耐火物表面の炭素の割合が増加して スラグよりメタルの方が濡れやすくなり、耐火物表面が スラグと接しスラグによる酸化物の溶損が生じる。そ の結果、耐火物表面の炭素の割合が増加していき、 耐火物表面の炭素が再びメタルにより溶解する、とい う機構である。

筆者ら³⁾は,溶融メタルの炭素濃度がZG材質の 局部溶損に及ぼす影響を調査するために,銑鉄(炭 素濃度4.5mass%)-大気雰囲気と,SS400(炭素濃 度0.1mass%)-Ar雰囲気の条件で,パウダーライン を模擬した浸漬法による侵食実験を行った。その結 果,SS400を用いた実験ではZG材質中のZrO2含

1 Introduction

The powder line part of the submerged entry nozzle for continuous casting in steelmaking process is locally corroded by fused mold powder (hereinafter referred to as "powder") and molten steel. The submerged entry nozzle (SEN) often ends the life due to corrosion of the powder line part, so that ZrO₂-C refractories (or zirconia-graphite refractories, hereinafter ZG) having high corrosion resistance is used. To develop highly corrosion-resistant ZG, it is important to evaluate the corrosion resistance in laboratory that can reproduce the phenomena in actual usage of the SEN, but few study performed on such evaluation.

A local corrosion mechanism in oxide-carbon based refractories has been revealed in which refractories are corroded by both slag and metal because of up and downward motions of the slag/metal interface^{1,2)}. This phenomenon can be understood that solid oxides have high wettability against molten slag and carbon has high wettability against molten metal. That is, it is a mechanism as follows. When area fraction of oxides on the surface of refractory material is high, the material is easily wetted by the slag. So, the refractory material and the slag are in contact, and the oxides on the surface of material is corroded by the slag. As the corrosion of the oxides progresses, the area fraction of carbon on the surface of material gets higher, so that the metal becomes more wettable than the slag, the surface of material gets to contact with the slag, and corrosion of the oxides by the slag occurs. As a result, the area fraction of carbon on the surface of material gets higher and the carbon on the surface of material is corroded by metal.

Authors have previously conducted corrosion tests for ZG (ZrO₂-C) refractories containing different ZrO₂ amount and porosity using pig iron (containing 4.5 mass% of C) and steel (0.1 mass% of C) to investigate influence of carbon content in the molten iron³⁾. Corrosion rate decreased with increasing the ZrO₂ content in the ZG when the steel was used, but increased with increasing the ZrO₂ content for the pig iron. They derived the relationship

 ^{*} 技術研究所 共通基盤研究センターアシスタントマネージャー Assistant Manager, Fundamental Research Center, Technical Research Labs.
** 品質保証部 品質保証企画グループ マネージャー Quality Assurance Planning Group, Quality Assurance Dept.
*** 技術研究所 共通基盤研究センター センター長 General Manager, Fundamental Research Center, Technical Research Labs.
*** 技術研究所 副所長 Deputy Senior General Manager, Technical Research Labs.
**** フェロー, 技術研究所 所長 Fellow, Senior General Manager, Technical Research Labs.

有量が高いほど高耐食性となり,実機と合う傾向で あったのに対し, 銑鉄を用いた実験では ZrO2 含有 量が低いほど高耐食性となり,逆転する結果となった。 この結果に対し,ジルコニア,黒鉛の,溶鉄,スラグ に対する濡れ性の関係から溶損中の ZG 材質の濡れ 性の関係を計算し,溶鉄中炭素濃度が上昇すると黒 鉛が溶鉄に濡れにくくなったことにより逆転したと考察 している。

そこで本研究では,溶鉄中の炭素濃度とZG材質 の耐食性の関係についての考察を深めるために,筆 者ら³⁾の計算したスラグ/メタル界面における濡れ性 の関係を用いた溶損シミュレーションを行った。

2 計算モデル

2・1 耐火物表面の濡れ性

ZG 材質がジルコニア粒子及び炭素のみで構成され ており、十分均質かつ平滑であると仮定する。このとき、 fzを ZG 材質表面におけるジルコニア面積分率、 θ_{sm} をスラグ/メタル界面における ZG の接触角とする。 また、図1のように、 $\theta_{sr}, \theta_{sz}, \theta_{sc}, \theta_{mr}, \theta_{mz}, \theta_{mc} をぞ$ れぞれスラグと耐火物、スラグとジルコニア、スラグと炭素、メタルと耐火物、メタルとジルコニア、メタルと $炭素の接触角であるとし、ア_s、 <math>\gamma_{mr}, \gamma_{sm}$ をそれぞれスラグ、 メタル、耐火物の表面張力、 $\gamma_{sr}, \gamma_{mr}, \gamma_{sm}$ をそれぞれス ラグ/耐火物界面、メタル/耐火物界面、スラグ/メ タル界面の界面張力であるとする。ただし、 θ_{sm} は $\theta_{sm}<90°$ のとき耐火物表面はスラグに濡れているもの として定義する。このとき、力の釣り合いから、

$$\gamma_r = \gamma_{sr} + \gamma_s \cos\theta_s \tag{1}$$

$$\gamma_r = \gamma_{mr} + \gamma_m \cos \theta_m \tag{2}$$

$$\gamma_{mr} = \gamma_{sr} + \gamma_{sm} \cos \theta_{sm} \tag{3}$$

が成り立つ (Young の式)。式 (1)-(3) より,

 $\gamma_{sm} \cos \theta_{sm} = \gamma_s \cos \theta_s + \gamma_m \cos \theta_m$ (4) と書くことが出来る。また、 θ_s 、 θ_m は Cassie の式を 用いて、

$$\cos \theta_s = f_Z \cos \theta_{sZ} + (1 - f_Z) \cos \theta_{sC} \qquad (5)$$

 $\cos \theta_m = f_Z \cos \theta_{mZ} + (1 - f_Z) \cos \theta_{mC}$ (6) と表される。スラグ/メタル/耐火物3相の界面にお いて、 θ_{sm} が90°を上回るかどうかによって、耐火物 表面がスラグ、もしくはメタルに濡れるかが決まる。ま of the ZG proceeding corrosion by wettability of zirconia and carbon against molten iron and slag and concluded that the reverse tendency was obtained because carbon come to have low wettability against molten iron when carbon content of the molten iron was high.

In this study, in order to discuss more in detail the relationship between the carbon concentration of molten iron and the corrosion resistance of the refractories, a computer simulation work was performed on the corrosion of the ZG material using the wettability relationship of that at the slag/metal interface.

2 Modeling

2 · 1 Wettability of Refractory Material

On the assumption that ZG materials consist of only zirconia and carbon, and sufficiently uniform and smooth, it is supposed that the area fraction of zirconia on the surface of the ZG is expressed by f_Z , the contact angle between the slag/metal interface and the ZG is θ_{sm} , and also θ_{sr} , θ_{sz} , θ_{sc} , θ_{mr} , θ_{mz} , θ_{mc} are contact angles between slag and refractories, slag and zirconia, slag and carbon, and refractory material, between metal and zirconia, and between metal and carbon, respectively. When θ_{sm} <90°, the surface of the ZG material wettable by slag. γ_s , γ_m and \mathcal{V}_{sm} , are expressing the surface tensions of molten slag, molten metal and slag/metal interface, and γ_{sr} , γ_{mr} and \mathcal{Y}_{sm} are the interfacial tensions of slag / refractory material interface, metal / refractory material interface and slag / metal interface. These relationships are shown in Fig. 1. Now, equations (1) - (3) are held from the balancing of the surface tensions (Young's equation).

$$\gamma_r = \gamma_{sr} + \gamma_s \cos\theta_s \tag{1}$$

$$\gamma_r = \gamma_{mr} + \gamma_m \cos \theta_m \tag{2}$$

$$\gamma_{mr} = \gamma_{sr} + \gamma_{sm} \cos \theta_{sm} \tag{3}$$

From equations (1) - (3), equation (4) is derived.

$$\gamma_{sm}\cos\theta_{sm} = \gamma_s\cos\theta_s + \gamma_m\cos\theta_m \tag{4}$$

 θ_s and θ_m can be expressed as equations (5), (6) by using Cassie's equation.

$$\cos \theta_s = f_Z \cos \theta_{sZ} + (1 - f_Z) \cos \theta_{sC}$$
(5)
$$\cos \theta_m = f_Z \cos \theta_{mZ} + (1 - f_Z) \cos \theta_{mC}$$
(6)

 θsm varies with f_Z , and when a certain critical value f_{Zc} is exceeded, the sign of $\cos \theta_{mC}$ are reversed, and the wettability relationship at the slag/metal interface is reversed. Further, if the slag and metal composition and the temperature are constant, which one the refractory material gets wet is determined by the area fraction of

た,スラグ及びメタルの成分,温度が一定の条件下で あれば,どちらに耐火物が濡れるかは耐火物表面の ジルコニア面積分率 *fz* によって決まることになる。

そこで、 $\theta_{sm}=90^{\circ}$ としたときの $f_Z \epsilon f_{Zc}$ とし、式(4) - (6) を用いて f_{Zc} について整理すると、

$$f_{Zc} = \frac{\gamma_m \cos \theta_{mC} - \gamma_s \cos \theta_{sC}}{\gamma_s \left(\cos \theta_{sZ} - \cos \theta_{sC}\right) - \gamma_m \left(\cos \theta_{mZ} - \cos \theta_{mC}\right)}$$
(7)

と書ける。式(7)から, *f_{Zc}* は ZG 材質がジルコニア粒 子及び炭素のみで構成されているという仮定の下では 耐火物組成に依存せず、スラグ及びメタルの成分、温 度が一定の条件下であれば定数値となることがわか る。ここで、筆者らの過去の研究における計算で用 いたスラグ及びメタルの表面張力及び接触角の値³⁷⁾ を用い、スラグ成分が一定で、メタル中の炭素濃度 が変化した場合の*f_{Zc}*の変化を計算すると、図2のよ うになった。

Fig.1 Relationship at equilibrium between the respective surface- and interfacialtensions (γ) and the contact angles (θ) for the case of (a) molten slag on refractory material, (b) molten metal on refractory material, and (c) triple point of slag/ metal/refractory material interface. zirconia at the surface of refractory material, f_Z . Now, let the f_{Zc} be f_Z when θ_{sm} =90°, f_{Zc} can be simplified into equation (7) from equations (4) – (6).

$$f_{Zc} = \frac{\gamma_m \cos \theta_{mC} - \gamma_s \cos \theta_{sC}}{\gamma_s \left(\cos \theta_{sZ} - \cos \theta_{sC}\right) - \gamma_m \left(\cos \theta_{mZ} - \cos \theta_{mC}\right)}$$
(7)

Fig. 2 shows the calculation result of relationship between f_{Zc} and carbon concentration of molten iron using the same contact angle and surface tension values as previously reported by the authors³⁻⁷⁾. It can be seen from **Fig. 2** that f_{Zc} decreases as the carbon concentration of molten iron increases.

Fig.2 Relationship between critical area fraction of ZrO₂ on the surface of ZG material and carbon concentration of molten iron calculated by eq. (1).

2・2 簡略化モデルを用いた一次元シミュレーション

以上の結果を用いて,溶損の簡略化モデルを用い た一次元のシミュレーションを行った。

前項と同様に,耐火物表面が十分均質かつ平滑で あると仮定する。*f*_{Zn}をnステップ目での耐火物表面の ZrO₂ 面積分率,*f*_{Z0} を耐火物表面の ZrO₂ 初期面積分 率とする。*f*_{Zn}>*f*_{Zc} であれば,スラグによりジルコニアが 溶損することになる。図3のように,ジルコニア溶損 部に初期面積比で新たなジルコニア,炭素が出現する と仮定する。また,簡単のために,溶損後も凹凸が ない状態とする。この過程をnステップ目から1ステッ プ経た時の ZrO₂ 面積分率 *f*_Z(n+1) は,

$$f_{Z(n+1)} = f_{Z0} \cdot f_{Zn} \tag{8}$$

となり, この時の ZrO_2 溶解量 ΔL_{Zn} は, 1 ステップ あたりの溶損厚み *th* を用いて,

$$\Delta L_{Zn} = th \cdot f_{Zn} \tag{9}$$

とかける。また、同様に*f_{zn}*<*f_{zc}*の場合メタルと接する ようになるため、炭素がメタルに溶解し、溶解後初期 面積比で新たなジルコニア、炭素が出現すると仮定す る。このときも溶損後に凹凸がないとする。この過程 の後の ZrO₂ 面積分率 *L_{zn}* は

$$f_{Zn1} = (1 - f_{Z0}) \cdot f_{Zn} + f_{Z0} \tag{10}$$

とかける。このときの ZrO_2 の溶損量 ΔL_Z は,

$$\Delta L_Z = \sum_n \Delta L_{Zn} = \sum_n th \cdot f_{Zn}$$
(11)

となる。ここで、炭素のメタルへの溶解はジルコニア のスラグへの溶解より十分速いとして、1ステップあた りにかかる時間を、炭素が溶解する過程は0単位時 間、ジルコニアが溶解する過程は1単位時間とした。 このとき、t単位時間後のZG材質の溶損速度を、

$$\Delta L_Z / (tf_{Z0}) \tag{12}$$

と定義し、ZrO₂ 86mass%のZG 材質の溶損速度を 100 としたときのZrO₂ 79mass%のZG 材質の溶損 指数を算出した。

2.2 One-dimensional Simulation

Based on the results obtained in the previous section 2.1, one-dimensional simulation was conducted by using simplified model. Let f_{Zn} be the area fraction of ZrO₂ on the surface of ZG material at the *n*-th step, and f_{Z0} be the initial area fraction of ZrO₂ on the surface of ZG material. Suppose when $f_{Zn} > f_{Zc}$, the ZG material contacts with slag and zirconia is corroded by slag, and new zirconia and carbon appear at the initial area ratio in the corroded part. Also, for the sake of simplicity, it is assumed that there is no unevenness after corrosion. **Fig. 3** shows the schematic image of zirconia corrosion step. The ZrO₂ area fraction $f_{Z(n+1)}$ when one step from the *n*-th step passes this

fraction $f_{Z(n+1)}$ when one step from the *n*-th step passes this process is

$$f_{Z(n+1)} = f_{Z0} \cdot f_{Zn} \tag{8}$$

and the amount of corroded ZrO_2 at this step ΔL_{Zn} can be written using the corrosion thickness per step th as follows:

$$\Delta L_{Zn} = th \cdot f_{Zn} \tag{9}$$

Then, if $f_{Zn} < f_{Zc}$, the ZG material contacts with metal and carbon is corroded by metal, and new zirconia and carbon appear at the initial area ratio in the corroded part. The area fraction of the ZrO₂, f_{Zn} after this process is

$$f_{Zn1} = (1 - f_{Z0}) \cdot f_{Zn} + f_{Z0}$$
(10)

And the amount of corroded ZrO_2 at this step ΔL_Z is

$$\Delta L_Z = \sum_n \Delta L_{Zn} = \sum_n th \cdot f_{Zn}$$
(11)

Now, suppose dissolution of carbon in metal is sufficiently faster than dissolution of zirconia in slag, the time taken per step is defined 0 unit time for the process of carbon dissolution, and 1 unit time for the process of zirconia dissolution. Thus, the corrosion rate of the ZG material after t unit time is defined as

$$\Delta L_Z / (tf_{Z0}) \tag{12}$$

Corrosion index of the ZrO_2 79 mass% ZG material was calculated when that of ZrO_2 86 mass% ZG material is 100.

2・3 セル・オートマトン法を用いた二次元シミュ レーション

二次元の溶損のシミュレーションにはセル・オート マトン (CA - cellular automaton) 法を用いた。初期 値には、実際の ZG 材質の反射電子像を2値化した ものからジルコニア、炭素のセルを200px × 200px の範囲に割り当てた。この初期値を図4に示す。た だし、輝度による判別が難しかったため気孔はすべ て炭素のセルとした。それらのセルに対し、スラグが 接触する場合スラグと隣接するセルのジルコニアを溶 損させ、メタルが接触する場合メタルと隣接するセル の炭素を溶損させた。ここで、隣接するセルを、周囲 8 セルとするムーア近傍条件とした。溶損した部分に は、次のステップではスラグもしくはメタルが侵入する こととした。ここで、スラグもしくはメタルがある場所 を1、それ以外を0とした行列をそれぞれ Us、Um とす ると、カーネル行列 K を用いて、

$$(U_s * K)_{ij} > 0$$
 (13)
となる座標 (i,j) においてジルコニアのセルが存在する
場合と,

$$(\boldsymbol{U}_{\boldsymbol{m}} \ast \boldsymbol{K})_{i,j} > 0 \tag{14}$$

となる座標 (*i,j*) において炭素のセルが存在する場合 に溶損が発生することになる。ここで,

$$(\boldsymbol{f} \ast \boldsymbol{g})_{i,j} = \sum_{m} \sum_{n} \boldsymbol{g}_{i-m, j-n} f_{m,n}$$
(15)

であり,これは二次元行列の畳み込み演算である。 また,ムーア近傍条件においてカーネル行列 K は,

$$\boldsymbol{K} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
(16)

Fig.4 Initial cell distribution of two dimensional corrosion simulation by CA method. (White: Zirconia, black: graphite; left: ZG material of 79 mass% ZrO₂, right: ZG material of 86 mass% ZrO₂).

2·3 Two-dimensional Simulation

Cellular automaton (CA) method was used for two-dimensional corrosion simulation. For initial cell distribution of zirconia and carbon, the binarized images of actual backscattered electron images of ZG material was used. Fig. 4 shows initial distribution. Note that all pores are distributed to carbon cell because of difficulty of definition by contrast of the image. If slag contacts, zirconia cells neighboring slag are corroded, and if metal contacts, carbon cells neighboring metal are corroded. Note that neighboring cells are around 8 cells (Moore neighborhood). Let the corroded cells be penetrated slag or metal at the next step. Assuming that U_s and U_m are the matrices where the slag or metal is 1 and the others are 0, respectively. Using kernel matrix, K, corrosion criteria of zirconia cells and carbon cells at the coordinates (i,j) can be expressed as follows:

$$(\boldsymbol{U}_{\boldsymbol{s}} \ast \boldsymbol{K})_{i,j} > 0 \tag{13}$$

$$(\boldsymbol{U}_{\boldsymbol{m}} \ast \boldsymbol{K}) \ _{i,j} > 0 \tag{14}$$

Now, equation (15) is two-dimensional matrix convolution operation.

$$(\boldsymbol{f} \ast \boldsymbol{g})_{i,j} = \sum_{m} \sum_{n} \mathbf{g}_{i-m, j-n} f_{m,n}$$
(15)

In addition, the kernel matrix, K is described as equation (16) in Moore neighborhood condition.

$$\boldsymbol{K} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
(16)

These CA rules are shown in **Fig. 5**. Now, the number fraction of zirconia cells on present on the surface of ZG material is defined as the area fraction of ZrO_2 on the surface of ZG material at n-th step, f_{Zn} . Which contacts with the surface, slag or metal is determined depending on whether f_{Zn} exceeds f_{Zc} or not at each step. Now, let the mean corrosion depth of the ZG material after t unit time elapsed be taken as the area of the corrosion part divided by the width (200 px), and let corrosion rate be mean corrosion depth divided by t defined similary with the one-dimensional case. **Fig. 6** shows the example of corrosion

Fig.5 CA rules of the corrosion simulation.

である。これらのセル・オートマトンの規則を図で表 したものが図5である。表面にスラグとメタルのどち らが現れるかは、耐火物表面に存在するジルコニア、 炭素のセルの比を f_{2a} とし、前項と同様に f_{2c} を上回る かどうかによって、溶損のステップ毎に判定した。一 次元のシミュレーションと同様に、炭素のメタルへの 溶解はジルコニアのスラグへの溶解より十分速いとし て、1ステップあたりにかかる時間を、炭素が溶解す る過程は0単位時間、ジルコニアが溶解する過程は1 単位時間とした。このとき,t単位時間経過後のZG 材質の平均溶損深さを、溶損部の面積の合計を幅 (200px)で割ったものとし、それをtで割ったものを溶 損速度とした。図6に、 $f_{zc}=0.5$ の場合の溶損のステッ プの例を示す。まず、ZG 材質の組織の右側にスラグ が接触すると(ステップ0)、ジルコニアのセルが溶損 する (ステップ 1-2)。ここで, fzn は、表面に存在する セルに対するジルコニアセルの個数分率として定義す る (図 6 赤枠部)。すると、ステップ2 で f_{Zn} が f_{Zc} よ りも小さくなるため、ZG 材質の表面がメタルに対して 濡れるようになる。そのため、メタルによる炭素セル の溶解が進行する (ステップ 2'-6)。その結果, fzn が fzcより大きくなり、ジルコニアセルの溶損が再び生じ る。炭素の溶解はジルコニアの溶損に比べて十分速 いと仮定すると、時間変化に対する溶損による組織 変化を図7のように表す事ができる。

3 結果と考察

ー次元の計算結果を図8に示す。この結果から, 臨界ジルコニア面積分率*f*_{2c}が減少するにつれて,言 い換えると,溶融メタル中のC濃度が増大するにつ

Fig.8 Corrosion index of ZG material containing 79 mass% ZrO₂.

Fig.6 Simulation illustration of the corrosion simulation step by step $(f_{Zc}=0.5)$.

Fig.7 Relationship between time and structure in Fig. 6.

step in the case of f_{Zc} =0.5. At first, slag contacts the right side of the ZG structure (step 0), and zirconia cells are corroded by slag (step 1-2). f_{Zn} is defined zirconia cell ratio of the surface cells (surrounded by red line). Next, at the step 2, f_{Zn} become smaller than f_{Zc} , and the surface of the ZG material become wettable against metal. And so corrosion of carbon cells by metal proceeds (step 2'-6). As a result, f_{Zn} exceeds f_{Zc} and corrosion of zirconia cells occurs again (step 6'-8). According to assumption that corrosion of zirconia, progress of structure change due to corrosion with time can be illustrated as **Fig. 7**.

3 Results and Discussion

The calculation results of one-dimensional corrosion simulation are shown in **Fig. 8**. From these results, it is understood that as the critical area fraction of ZrO₂, f_{Zc} decreases, in other words, as the C concentration in the molten metal increases, the corrosion index of ZG material containing 79 mass% ZrO₂ comes close to 100 and is suppressed. However, unlike the experiment by authors³, even if f_{Zc} became a very small value of about

れて、 ZrO_2 79mass%の ZG の溶損指数が 100 に近 づき、溶損が抑制されていることがわかる。しかしな がら、著者らによる実験と異なり、 f_{Zc} が 0.01 と非常に 小さな値となっても ZrO₂ 79mass%の ZG の溶損速 度は ZrO₂ 86mass%の ZG よりも小さくならなかった。

二次元の計算結果を図9,10に示す。図9から、二 次元とすることで、骨材とマトリックスとで溶損の形 態が異なることが見て取れる。図10はこの結果から 求めた平均溶損深さと時間の関係である。これを見る と、f_{2c}=0.50の条件では ZrO₂ 86mass%の ZG 材質 よりも ZrO2 79mass%の ZG 材質の溶損が速いが、 f_{zc}=0.15ではほぼ同等の速さとなり、f_{zc}=0.05では逆 転していることがわかる。一次元,二次元の結果及 び著者らが行った実験による、ZrO2 86mass%のZG 材質の溶損速度を100とした場合の ZrO₂ 79mass% の ZG 材質の溶損指数を図 11 に示す。一次元の溶損 シミュレーションでは、溶鉄中のC濃度による溶損 傾向の逆転を再現できなかったが、二次元では再現 できていることがわかる。以上のことから、微構造は ZG 材質の溶損傾向に大きく影響していることがわ かった。

Fig.9 Structure change in two-dimensional corrosion simulation by CA method.

0.01, the corrosion rate of ZG material containing 79 mass% ZrO_2 did not become smaller than that of ZG material containing 86 mass% ZrO_2 .

The results of the two-dimensional corrosion simulation are shown in **Figs. 9** and **10**. From **Fig. 9**, it can be seen that the form of corrosion of coarse grain is different from that of matrix part. **Fig. 10** shows the relationship between mean corrosion depth and time obtained from the calculation. When f_{Zc} =0.50, the corrosion rate of ZG material containing 79 mass% ZrO₂ is larger than that of ZG material containing 86 mass% ZrO₂, however, corrosion rate of both are almost the same when f_{Zc} =0.15 and reversed when f_{Zc} =0.05. **Fig. 11** shows comparison of the corrosion index of ZG material containing 79 mass% ZrO₂ obtained from the simulation and the experiment by authors³. In the one-dimensional corrosion simulation, the reversal of the corrosion tendency due to the carbon concentration of the molten iron could

Fig.10 Comparison of corrosion-time curves for various ZG material obtained from two-dimensional corrosion simulation results by CA method.

Fig.11 Comparison of the corrosion index of ZG of ZrO₂ 79mass% obtained from the simulation and the experiment.

4 結言

溶鉄中の炭素濃度と ZG 材質の耐食性の関係についての考察を深めるために,スラグ/メタル界面における濡れ性の関係を用いた溶損シミュレーションを行った。

一次元溶損シミュレーションの結果,溶鉄中の炭素 濃度が上昇するにつれて,ZrO2 86mass%のZG材質 と比較し,ZrO2 79mass%のZG材質の溶損が抑制 されていくが,逆転までは至らないことがわかった。 そこで,実際のZG材質の組織構造を用いてセル・オー トマトン法による二次元溶損シミュレーションを実施 した結果,溶鉄中炭素濃度が上昇すると,ZrO2 79mass%のZG材質の溶損はZrO2 86mass%のZG 材質よりも小さくなった。

以上より,メタル中の炭素濃度とZG材質の溶損傾向には,微構造の影響が大きく関与していることがわかった。

参考文献

- K. Mukai et al.: Canadian Metallurgical Quarterly, 25 [4] 265-275 (1986).
- K. Mukai et al.: ISIJ International, 29 [6] 469-476 (1989).
- 松本成史他:第3回鉄鋼用耐火物専門委員会報告集,耐火物技術協会,(2015)pp.213-223.
- 日本鉄鋼協会編:溶鉄・溶滓の物性値便覧,(1972) pp. 32-107.
- 5) V. I. Nizhenko et al.: Soviet Powder Metallurgy and Metal Ceramics, **13** [6] 487-492 (1974).
- 6) 日本鉄鋼協会編:鉄鋼物性値便覧 製鉄編, (1995) pp. 471-482.
- 7) 松本成史他:第74回原料専門委員会報告集, 耐火物技術協会,(2014) pp. 41-50.

本論文は以下の報文を翻訳・加筆・再構成して転載 したものである。

Shigefumi Matsumoto et al.: Proceedings of UNITECR2019 (2019) pp.581-584.

not be reproduced, but in the two-dimensional corrosion simulation could be reproduced. In the two-dimensional simulation, as in the experiment by authors³⁾, it can be seen that the relationship between the ZrO_2 content of ZG material and the corrosion index is reversed when the carbon concentration of molten metal is high. From the above, it was found that the influence of the microstructure is largely relied on the corrosion tendency of the ZG material.

4 Conclusion

In order to discuss more in detail the relationship between the carbon concentration of molten iron and the corrosion resistance of the refractories, a computer simulation work was performed on the corrosion of the ZG material using the wettability relationship of that at the slag/metal interface. As a result of the one-dimensional simulation, corrosion of the ZG with 79 mass% decreased with increasing the carbon concentration of the molten iron was, but the corrosion never become less than that of the ZG with 86 mass% ZrO₂. Two-dimensional simulation by the cellular automaton method using the actual structure of the ZG material, however, revealed that the corrosion of the ZG with 79 mass% ZrO2 became less than that of the ZG with 86 mass% ZrO2 with increasing carbon concentration of molten iron, indicating that the influence of the microstructure was largely relied on the corrosion tendency of the ZG material.

References

- 1) Kusuhiro Mukai et al.: Canadian Metallurgical Quarterly, **25** [4] 265-275 (1986).
- Kusuhiro Mukai et al.: ISIJ International, 29 [6] 469-476 (1989).
- 3) Shigefumi Matsumoto et al.: TARJ 3rd technical committee of refractories for iron and steel processing, 213-223 (2015).
- The Iron and Steel Institute of Japan: Physical Properties of Molten Iron and Molten Slag, (1972) pp. 94-95.
- 5) V. I. Nizhenko et al.: Soviet Powder Metallurgy and Metal Ceramics, **13** [6] 487-492 (1974).
- The Iron and Steel Institute of Japan: Physical and chemical data book for iron-and steelmaking, (1995) pp. 471-482.
- 7) Shigefumi Matsumoto et al.: Taikabutsu, 66 [11] 568-569 (2014).

This paper is translated and reprinted with some additions and reconstructions to the following paper:

Shigefumi Matsumoto et al.: Proceedings of UNITECR2019 (2019) pp.581-584.